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ON VOLTERRA INTEGRAL EQUATIONS WITH
NONNEGATIVE INTEGRABLE RESOLVENTS

R. XK. Miller

I. INTRODUCTION

Given the linear Volterra integral equation

(1) | X(t) = F(t) - [ a(t-s)X(s)ds, (t z 0)

it is well known that the solution has the form

t
(2) ’ X(t) = P(t) - fok(t—s)F(s)ds

where the resolvent kernel k(t) is the solution of the linear equa-

tion

t
(R) k(t) = a(t) - foa(t-s)k(s)ds°

In section II below we give sufficient conditions on the func-

"tion - a(t) in order that k(t) be both nonnegative and of class

©

Ll(O,m). We give simple formulas for calculating fok(t)dt. These
results give detailed information concerning the solution (2) of the
linear equation (1) when the function F(f) is known. It is also

shown that if a(t) is nonconstant, locally integrable and completely
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monic on 0 <t <, then a(t) satisfies our sufficient conditions.
This shows that our criteria are satisfied by a large class of interes-
ting end importent kernels a(t).

The results of section II also give information concerning

the behavior'éf certain nonlinear equétions. Consider the equation
R - % | .
() x(%) = F(t) - [ a(t-s)a(x(s))as,

where g(x) = x+o(x) as |x] - 0. According to the theory developed
in [8] if F is "small", the solution k(t) of equation (R) is
Ll(O,w) and the solution X(t) of equation (1) tends to zero as

t — », then the solution x(t) of (3) tends to zero. If

1 . .
a € L'(0,»), then a well known result of Paley-Weiner provides necessary

and sufficiént conditions in order that k be of class Ll(O,w),
c.f. [12, p. 60]. ©Nohel [10] has pointed out that in order to widen
the range of application of‘the results in [8] it would be of interest
to develope other general criteria which guarantee k(t) € Ll(O,m).
The results in section II are a partial solution to this problem.

In sectlons III, IV and V below the results of sectlon 11
are applied to the study of the behavior of solutions of nonlinear
equations of tﬁe form | |

t
(w) x(t) = foa(t—s)G(x(s),s)ds (t 2 0)
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when G(x,t) is nonincreasing.in x (for each fixed t) and a(t)
is such that k(t) 1is both nonnegative and of class Ll(O,m). Sec-
tion III confaiﬁs preliminary results which are needed in the sequel.
Section IV containé results concerning the behavior of x(t) when
G(x,t) is nondecreasing in t. In sectiﬁn V we show that if G is
2ll-periodic in its second variable and satisfies some other mild con-
ditions, then the solution x(t) of equation (N) fends to a certain
periodic function @(t) as t oo,
The results in section II are related to certain results of
Friedman [2, 3]. Under the addition assumption that a € C2(0,w)
or that a(0+) < w, Theorem 2 can be proved using Friedman's techniques.
Corollary 2 was proved by Friedman using different techniques, c.f.[2, Theorem &j.
The results in sections III and IV are.related to.results of Mann and
Wolf {6], Mann and Rbberts [5], Padmavalley [11l] and Friedman [2].
‘They generalize all of the main results in [5] and {11]. Friedman
[2, p. 391] has suggested a different method of obtaining the results
in section IV under slightly stronger smoothness assumptions on the
function G.
Theofem io_of section V generalizes certain results of
.Levinson [4, Theorem 2] and Friedman [3, Theorem 5). Under very
general asSumptioné on a(t) and G Friedman shows that the solu-
tion x(t) of equation (N) satisfies the condition

L

(4) lim{x(t+2N) - x(t)} =0 (t » ).



He askes whether or not condition (4) can be replaced by the stronger
assertion that x(t) tends to a 2ll-periodic function as t — . The

results in section V show that there does exist a 2Il-periodic function

¢ -such that
Lin{x(t) - @(t)} =0 (t »=).

The basic results on local existence, uniqueness and con-
tinvation of solutions of nonlinear Volterra integral equations will
be needed in the sequel. Iocal existence and uniqueness theorems
are in most texts. The necessary‘results on continuation as well as

very general existence and uniqueness theorems may be found in [9].

_IT., THE RESOLVENT KERNEL

The following result of Friedmen [2, p. 387] concerning the

equation

. t
(5) . | x(t) = £(t) - foh(t—s)g(x(s),s)ds

" will be,needéd.} This result is a generalization of Lemmas 1, la and

¥
¢
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1b of [11]. Since the proof is not completely clear from Friedman's
remarks, a proof is given here.

THEOREM 1., Supposé f ii positive1and continuous gg.the interval
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0=t<ow, Lét h be poéitive, continuous~aﬁd>locally ihtegréﬁie éﬁ

0 <t <w Suppose g(x,t) 1is measurable in (x,t) for -w < x < =,

0st<o g iilcontinuous i&n x for each Fixed t, xg(x,t) 20 for

all (x,t) and the functions f, h and g aréisufficiently smooth

to guarénfee‘the uniquenéss gf.the solution 2§I(5). Ef';

£(T)/£(t) = h(T-s)/h(t-s)

whenever O £ s S T <1t, then the solution x(t) of (5) exists for

all t 2 O and satisfies 0 £ x(t) s £(t).

Proof. Define g*(x,t) = g(x,t) if x 2z 0 and gx(x,t) =0 if
x $ 0. Let x*(t) be a solution of (5) when g is replaced by g*.

Then for as long as x* exists it must be nonnegative. If this were

not true, then the set

A = {t z 0; x*¥(s) exists on [0,t] and x*(t) <0}

is a nonempty open set. Let (T,To) be a maximal open interval con-
tained in A. Then x¥(T) =0 and for T <t <T

g T |
0 > x*{t) = £(t) - [ h(t-s)e*(x*(s),s)ds

T

= (£(t)/£(T)}{£(T) - [ £(T)n(t-s)e*(x*(s),s)/f(t)ds}
T

z [£(t)/£(1)}(£(T) - J h(T-s)e*(x*(s),s)ds)

o.

(£(t)/£(T)}x*(T)
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This contradiction shows thaé A 1is empty. Since x*' is ﬁon—
negative, 0 = x*(t) £ f(t) for as long as x* exists. Since £(t)
is bounded on each finite interval, x*(t) can be continued as a
solution of the integral equations for all © 2 0. The definition of y
g* imblies that “x*(t) = x(t). This completes the proof of Theorem 1.

} Concerning the function a(t) it is assumed that
(A1) a € 1}0,1),
(A2) a 1is positive, continuous and nonincreasing on the interval

0 <t <w, and

(A3) for any T >0 the function a(t)/a(t+T) is a nonincreasing

function of t on the interval 0 <t < » (compare [5, p. 432]).

THEOREM 2. If a(t) satisfies (Al-3), then equation (R) has a unigue,

locally integrable solution k. The function k exists and is con-

“tinuous on 0<t<w If a(0") < @, then k is also defined and

continuous at t = 0., Moreover

A

(1) 0 = k(t) = a(t) on 0<t <w,

0

(ii) fok(t)dt

A

1, and

(i1i)  k(t) #0 on any interval of the form (0,T), T > O.

Proof. Iet € bea positivé sequence decreasing to gero. Define

n
a (t) = a(t+€n) and let k_  be the unique solution of
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(6) kn(t) = an(t) - foa(t-s)kn(s)ds. (t 2 0)

If follows from Theorem 1 above that O S kn(t) < an(t) s a(t) for
0<t <

Since kﬁ(t) 20 and a(t) is nonincreasing

t , 1 t s
fo|kn(s)|ds = fokn(t-s)ds < fo{kn(t-s)a(s)]/a(t)ds
= {a (t) - kn(t)}/a(t) s 1.

«©
Letting t » » we see that folkn(s)lds < 1.
Fix any T >0 and define Kn(t) = kn(t) on 0t sT

and Kﬁ(t) = 0 elsewhere. Then

[:IKn(s)|ds s 1. (n =1, 2, 5,.'.)'

For any h (0 < h < 1) we have

o h+
k (t) = a (t+h) - a (t) - ft~t a(t+h-s)k (s)ds

t
- fo[a(s+h) - a(s)]kn(t-s)ds.

kﬁ(t+h)

Since 0 §»kn(t) s a(t) it follows that




5] TEEERIIEY |CinTT

T t+h ' T h
fhft a(t+h-s)kn(s)dsdt s fofoa(h-s)kn(t+s)dsdt

h T h : h
= fo(fokn(t+s)dt)a(h-s)ds s Io lea(h-s)ds = foa(s)ds.

Similiasrly it follows that

Tt T T
fhfola(s+h) - a(s)lkn(t-s)dsdt s fo[fskn(t-s)dt]lg(s+h) - a(s)]ds
. T L |
s fol-la(s+h) - a(s)|das.
Therefore when Cn <1l
T h T

fh|kn(t+h) - kn(t)ldt s foa(s)ds + 2fo[a(s+h) - a(s)|ds.

Since for each n, kn(t) s a(t) it follows that

® h T+h T
[m|Kn(s+h) - Kn(s)|ds s fokn(t)dt + fT k (t)az + fhlkn(t+h) - kn(t)ldt -0

as h —>0' uniformly for all n..A similiar result holds when h -0 .

This shows that the sequence {Kn} has compact closure in the space

'L(-w,®), c. £. [1, pp. 298-299].

There is a function k ¢ Ll(O,T) and & subsequence (which
we again index by n) such that k, -k in Ll(O,T). By possibly
taking a further subsequence we may assume that kn(t) —ako(t) a. e.

Repeating the above argument for the successive intervals (0,nT),
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n=2,3, 4,... and using the diagonal subsequence we may define ko(t)

on all of (0,x).

Since kn(t) —>kb(t) a..e, it follows that 0 = ko(t) s a(t)
o0

a. e, on (0,®). Clearly foko(t)dt £ 1. Since a. e. |kn(s) - ko(s)l <

2a(s), it follows from dominated convergence that a. e.

t
" a(t-s)(k (s) - k (s)}ds =0

as n -, Therefore k_ = solves equation (R) a. e.

for 0 <t <= define
t
k(t) = a(t) - foa(t-s)ko(s)ds.

Then k(t) is continuous on 0 <t <« and k(t) = ko(t) a. e. Thus
k solves (R) and satisfies (i) and (ii). Since a(O+) = k(O+) one
can define k(0) = a(0’) if a(0') < w.

In order to prove uniqueness sﬁppose k, € Ll(O,T), is con-

1

tinuous-on 0 <t <T and solves (R). Fix an integer n so large that
' h
if h = T/n, then [ a(s)ds < 1. If k,(t) # k(t) on {0,h] then

h h t
folkl(s)-k(s)lds = [ | a(s)(k (t-5)-k(t-s)}ds|at

h h
fo{fslkl(t-s)-k(t—s)ldt)a(s)ds

A

h h h
s fo{folkl(t)-k(t)ldt}a(s)ds < folkl(t)-k(s)lds.
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Therefore k,(t) = k(t) on (0,h]. Since

h ' t
- k(t+h)-= {a(t+h) - foa(t+h-s)k(s)ds} - foa(t-s)k(s+h)ds

The same argument shows that

h
folkl(t+h) - k(t+h)|at = o,

that is ki(t) = k(t) for h St s2h. By induction k(t) = k()
on (0,T)]. This proves the uniqueness of k.
To prove (iii) suppose k(t) =0 for all t on an interval

0 <t <T. Then it follows from equation (R) that a(t) =0 a. e. on

(0,T). This contradicts the assumption a(t) >0 so that (iii) follows.

This completes the proof of Theorem 2.

Corollary 1. Suppose a(t) satisfies (AL1-3).
-}
1
(i) If a(t) ¢ L(0,»), then fok(t)dt = 1.
[« <]

(ii) 1If foa(t)dt = A < =, then

fok(t)dt = A(1+A)'1 < 1.
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Proof. Suppose a(t) ¢ Ll(O,w). The solution x(t) of the equation

t
x(t) =1 - foa(t-s)x(s)ds

t

is x(t) = 1 - fok(s)ds. By Theorem 2 above x(t) 4is nonnegative

and nonincreasing.

Suppose that 1lim x(t) = x(®) >0 (t —»®). Then

3

t
x(t) £ 1 - [ a(t-s)x(w)ds - -

as t —=. This contradicts x(t) 2 0 and proves part (i).
- Now suppose a(t) € Ll(O,w). If * denotes the Laplace

transformation, then it follows from equation (R) that
k*(w) = a*(w) - a*(w)k*(w),

when Re w 2 0. Since a*(0) = A, part (ii) follows immediately.

This proves Corollary 1.

Definition: A function b(t) is completely monic on 0 <t < if

and only if b € €™(0,o) and

(-l)jb(j)(t) 20. (j=0,1,2,..., 0<t <o)



It is known, c.f. [13, p. 161] that a function a(t) is com-

pletely monic on (O,») if and only if there exists a nondecreasing

1

function 71 such that

[ ]

(7 - oa(y) = Joexp(-st)ar(s), (0 <t <)

where the integral is absolutely convergent for each t in (0,).

LEMMA 1. If a(t) is completely monic on 0 <t < o, then a(t) =0

or a(t) >0 for all t € (0,=),

Proof. If a(to) = 0 for some t_ >0, then since at(t) £ 0 we
see that a(t) = 0 for all t 2 e Since line (7) implies that
a(t) dis the restriction to the positive reals of an analytic func-

.tion, Lemma 1 is proved,

LEMMA 2, If a(t) is completely monic on 0 <t <o and a(t) #0

then a(t) satisfies (A3).

Proof. Assurption (A3) is equivalent to the convexity of the function

log a(t). ‘This in turn is equivalent to the condition that
" 2
y(t) = a(t)a"(t) - (a'(t)) =z o. (0<t < =)

Using (7) we see that .
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y(t) = foexp(;wt)dy(w)fozzexp(-zt)dy(z) - fow exp(-wt)dy(w)foz exp(-zt)dy(z),

o oo
= fJe(z=w)exp(-t(zw) Jar(z)ar(w).
Using the absolute convergence of the integrals it follows that

JoJ 2 (z=w)exp(-t(z+w))ar{w)dn(z)

]

fofwz(z-w)exp(-t(z+ﬁ))d7(z)d7(w)

I of lu-2) exp( (v2) Jar( ar(v)

Therefore

0o W ©

V(8 = [ (er) + L (ed)

"

fofo(z—w)gexp( ~t{z+w))ay(z)dv(w) > 0.

This proves Lemma 2,

Corollary 2. If a(t) is nonconstant, locally integrable and com-

pletely monic on the interval 0 <t < =, then the solution k(t) of

equation (R) satisfies all of the conclusions of Theorem 2 and Corollary

1 above,

- Proof. - This follows immediately from Lemmas 1 and 2 above.

Now consider the sequence of function (kn} defined by line
(6) of the proof of Theorem 2. It was shown that there exists a sub-
sequence such that for any T > 0 +this subsequence converges in the

sense Ll(O,T) to the solution k. Since the solution k of equation
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(R) is unique,Ait is easily shown that the entire sequence kn -k in

the L~ sense on each interval [0,T}. If a(t) is completely monic,

more can be'said about the convergence kn - k.

THEOREM 3. Let a(t) be nohconstént, loéally ihtegrablé and com-

pletely monic 22 the interval 0 <t < =, Suppose €8, and k.

are EE defined 32 the proof of Theorem>2 above; Theh

(i) for each t > 0  the sequence {kn(t)] is ndndecreasihg with

kn(t) - k(t), and

(ii) for each pair of constants tand tg with 0 < t, <ty

the sequence kn(t) - k(t) unifofmly for t € [to,tl].

Proof. Fix m and n with m > n. Define

z(t) = km(t) - kn(t) and f(t) = am(t) - an(t).
Then z satisfies
t
z(t) = f(t) - foa(t-s)z(s)ds.
In order to apply Theorem 1 above we must show that when 0 =1 =T <t,

y = £(T)a(t-1) - £(t)a(T-1) = O.

Using (7) we see that



o]

£(t) = [ _exp(-s(t+€_)){1-exp(-s8)}ar(s)

l 15 |

where B = e - Sm'> 0. Therefore

y = [ ] {1-exp(-58))F(s, Yar(s)ar(),

where

F(s,r) = exp(-rt+rT;sT-scm) - exp(-rT+rT-sﬁ-s€m).

Split y intoc the two integrals
o r o 00
y = [ J (o) + [ J (ee) = I, + e

If we reverse the order of integration in 12, interchange the roles

of r and s, and then add I, and 12 it follows that

1

o o
y = [ J A(BC-DE)ax(s)ar(r),

o~
n

exp(-rt-sT)-exp(-rT-st),
B = exp(rT-sem), C 5 l-exp(-sd),
D = exp(sT—rCm), E = l-exp(-rd).




Since 71,5 and t - T >0 and 0 < s <r it is easily shown that
-A, B-D and C-E are positive. Thus y £ 0, z(t) 2 0 for all

t > 0. Therefore whenever m > n
< - < -
& 02 K (t) - K (t) £ a(ts€ ) - a(te€)

uniformly for all t > 0.

" Since the.sequence [kn(t)} is nondecreasing and is bounded
above by a(t), it converges to a limit kl(t). Line (8) implies
that {kn(t)} is a Cauchy sequence uniformly on each compact subset
of 0 <t <, Therefore kl(t) is continuous and must equal k(t)
for all.- t > 0. This proves part (i).

Letting m —»» in (8) it follows that -
0% K(1) - 1,(4) = a(t) - a(see),
wiformly for all t > 0. This proves part (ii) and completes the

proof of Theorem 3.

Note that in case a(t) is completely monie, k(t) is also

" completely monic. By Theorem 8 of [2] the solution. x(t) of the equa-

tion

t
x(t) =1 - foa(t-s)x(s)ds
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is completely monic. Since x(t) = l'fok(s)ds’ x(J)(t) - -k(Jfl)(t)

for j =1, 2, 3,... and the remark follows.

III. PRELIMINARY RESULTS
This sectibn contains generalizations of some of the results

in [11].

LEMMA 3. Subpose. a(t) safiéfiéé.(Al~3). For some fixed T >0 let

. . © .
® and 6 be nonnegative with 6 € L (0,T) and ¢ € Lw(O,T). Then

the solution 2z of

t t .
(9) 2(t) = J a(t-s)6(s)ds - [ a(t-s)p(s)z(s)ds

exists on the interval 0 £t £ T and is nonnegative there.

Proof. Let M = l+ess. sup. ®(t), O S t S T. Then (9) is equivalent

to the equation

t t
z(t) = foMa(t-s){G(s)/M]ds_-'foMa(t—s){@(s)/M}z(s)ds.

. 8ince Ma(t)  also satisfies (Al-3) it is no loss of generality to as-

sume that O s @(s) £1 on [O,T].

Equation (9) may be written in the form

" .
z(t) = £(t) - foa(t—s)z(s)ds,
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where

_ t
£(t) = [ a(6-)(8(s) + (149(3))a(s)]ds.

If k dis the solution of (R), then it follows that

t
z(t) = £(t) - fok(t-s)f(s)ds,

or

t t
(10) z(t) = fok(t—s)G(s)ds + fok(t-s)(l-Q(s))z(s)ds.

Since the reasoning is reversible, equations (9) and (10) are eguival-
ent. Since the coefficients in equation (10) are nonnegative, z(t)
must be nonnegative for as lohg as it exists, The nonnegativity of =z
and (9) imply

t

0 s z(t) s foa(t—s)e(s)ds

for as long as z exists. Thus z(t) . exists on [0,T] and Lemma 3

is pio#ed:

Corollary 3. If in Lemma > one has 6(t) >0 a. e., then z(t) >0

for 0<t =T, ¢
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Proof, Line (10) implies that z(t) z fok(t-s)e(s)ds. Using Theorem

2, part (iii) it follows that

t
fok(t-s)e(s)ds >0

when 0 <t ST, This proves Corollary 3.

LEMMA by, Subpdse a, ¢, 6 ‘and T éatisfy the hyﬁotheses gi Leﬁma 3.

Suppose 2z solves

h | t
(11) z(t) = [ a(t+h-s)0(s)as - [ a(t-s)o(s)z(s)ds,

where O <h <T. Then 2z exists and is nonnegative on [O,T].

~Proof. As in the proof of Lemma 3 one may assume that 0 = ¢(t) s 1.

Also note that (11) is equivalent to

t
(12) 2(t) = f£(t) + fok(t-s)(14$(s))z(s)ds,

where -
- .,».z.;u“‘f.;._ e - .h‘ t h

f&t) = foakﬁ;h—s)e(SSds - fofok(t-s)a(s+h-u)6(u)duds.

Using (R) and some manipulation it follows that
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th bt
fofok(t-s)a(s+h—u)9(u)duds = fo[fok(t-s)a(s+h-u)ds}6(u)du

h t+h-u o
= fo(fb - k(t+h-u-s)a(s)ds - &_hk(t-s)a(s+h-u)ds}6(u)du

h ‘
= fo{a(t+h-u) - k(t+h-u) - éihk(t-s)a(s+h-u)ds}6(u)du.

Therefore

h
£(t) = fo{k(t+h-u) + &fhk(t:s)a(s+h~u)ds}9(u)du z 0.

Since the coefficients of equation (12) are nonnegative, z(t) 2 O.

Thus (11) implies that for as long as 2z exists

h
05 z(t) = foa(t+h-s)9(s)ds.'

Therefore 2z exists on the interval [0,T] and Lemma 4 is proved.

LEMMA 5. Suppose a(t) satisfies (Al-3). If k is the solution

of (R), then for each finite T >0

T
fok(t)dt < 1.

t
l-fok(s)ds is the solution of

Proof. The function x(t)

t <
l-foa(t-s)x(s)ds.

x(t)
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Suppose for contradiction that x(t) =0 for all t 2T >0. We may

assume that T is the smallest such number. If t, >t >T, then

T
x(tj) =0 = l-foa(tj-s)x(s)ds,

and
T
fo{a(to—s) - a(tl-s)}x(s)ds = 0.

Since a(t) is nonincreasing and x(s) >0 when 0O

HA

s <T,

- = - ' S i it
’ﬂ(to s) a(tl s) when O £ s <T. Since t, and t, are arbitrary,
a(t) = A, a constant, for all t z 0. Equation (R) can then be solved

for k(t) = A exp(-At). For this k(t) no such T can exist. This

proves Lemma 5.

Corollary 5. Suppose the hypotheses of Lemma 4 are satisfied. If

6(t) >0 a. e. then the solution z(t) of (11) is positive when

0

A

t

A

T,

Proof. It follows from line (12) of the proof of Lemma U4 that
2(t) = £(t). In order to show that f£(t) >0 it is sufficient to show
that k(t) >0 on the interval 0 <t < w,

If k(t) =0 for any t >0 -then equation (R) has the form
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0 = a(t) -'f:a(t-s)k(s)ds.

Using Lemma 5 and the asSumption that a(t) is noninereas-

ing it follows that

ot t
o a(t) = foa(t-s)k(s)ds z a(t)fok(s)ds > a(t).

The contradiction shows that k(t) > O on any interval. This proves

Corollary 5.

Now consider the nonlinear equation
- t
() x(t) = [ a(t-s)a(x(s),s)ds, (t 2 0)

together with the following assumptions:
(A4) G 1is measurable in (x,t) for -o <x <, 0 £t < o, con-
tinuous and nonincreasing in x for each fixed t, and bounded

on each finite rectangle Xy £ x = Xp) 0+t = tl.

(A5) There'is a function wu(t), bounded on each finite subinterval
of [0,x), such that G(u(t),t) =0 for all t 2 O.

(A6) ©(x,t) 1is locally Lipschitz continuous in x.

THEOREM 4. If a(t

e

satisfies (Al-3) and G satisfies (AL-6),
then equation (N) bas a unique local solution.

The proof of Theorem 4 is well kyown.
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THEOREM 5. Suppose a(t) satisfies (A1-3) and both G, and .G,

1 "2

satviAsf.y (Ahf6) with Gg(x,t) £ Gl(x,t) E‘_.c_>_‘1_'_.al‘l (x,t). _I;e_il Yy

sbiﬁé.(N) when G = G,,.i=1, 2. Suppose bbfﬁ ¥y ana’ ¥ eXiéﬁ

1

on .an interval {o,1l.

(1) Then y,(t) £ y;(t) on [0,T].

(ii) If in addition G,(x,t) < Gl(x,t) for all (x,t), then

yg(t) < yl(t) when 0 < %

Proof. On the interval O = t £

o(t)

n

and

Gl(yl(t)’

£ T.

T define z(t) = y;(t) - Yz(t);

(Go(yp(t),t) = (v (%),8)}/2(t) if z(t) £o0,

@(t)

"

0

if z(t) = o.

Clearly o¢(t) is nonnegative and measurable. Assumption (A6) implies

Q € L?(O,T). Using the definitions of z,® and 6 it follows that

t

t

z(t) - foa(t-s)e(s)ds - foa(tfs)m(s)z(s)ds.

Lemma 3 implies z(t) = 0. This
To prove part (ii) note

fore z(t) >0 by Corollary 3.

proves (i).

that 6(s) >C in this case. There-

This proves Theorem 5.
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LEMNA'G. Sugggse (A1-6) are satisfied. Iﬁ G ié iﬁdepenaéhtlgi t

and u(t) =Mz O, then the solution x(t) 2£\(N) exists for all

tz0 aﬁdAéafisifes_ 0 = x(t) s M,
Proof. If M =0, then x=0. If M>0 let y = M-x so that

t
y(t) = M-foa(t-s)G(M-g(s))ds.

Theorem 1 above implies that O S y(t) S M for all t 2 0. This

proves Lemma 6.

THEOREM 6. Suppose (A1-6) are satisfied. If m, M2 O are such that

-m £ u(t) M on 0=t =T and if x(t) is the solution gf (w),

then x(t) exists on [0,T] and satisfies -m-S x(t) M. In

particular x(t) exists for all t 2 O.

Proof. Our proof is essentially the same as Padmavally's, c.f. [11,
pp. S5hk-5L5].

Define a function H by

H(x) = sup{G(x,t); 0sts T}.

o T

Clearly H(x) exists and is nonincreasing. Since

| K(x)-H(y)| = | sup 6(x,)-sup 6(y,t)|" & sup |6(x,t)-G(y, )] ,
t t t
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it follows that H is locally Lipschitz continuous.
Let us define that N = sup u(t) on the interval 0 st s T.
Pick & such that u(tn) N and 0 =t_ = T. Then

n

H(R) = lim H(u(tn)) = lim{sup G(u(tn),t)) < lim sup{G(u(tn),tn)]‘z 0.
n : n t n

If x <N, then there exists a t_ € [0,T] such that u(t)) % x.
Therefore H(x) = sup G(x,t) 2 G(x,t,) 2 0, and so H(N) = O. This. shows
that the function wu*(t) corresponding to H can be-taken to be

u¥(t) =Nz 0. If N2 O, then we may assume M =N. If N <O, then

we may assume M = O. In this case replace H(x) by H(x+N).

- Let y(t) solve the equation

t
y(t) = [ a(t-s)H(y(s))as.

By Lemma 6, y(t) exists and O £ y(t) s M for a1l t 2 0. By Theorem

A

5, Mz y(t) 2 x(t) for as long as x(t) exists and 0 £t £ T.

I

z -x(t) for

The same argument shows that if X = -x, then m 2 X(t)

as long as x(t) exists and O £t £ T. Therefore x(t) exists and

. satisfies -m £ x(t) £ M on the interval O £ ¢t £ T. The last line

of Theorem 6 follows from (A5) and the first part of the theorem,

This proves Theorem 6.
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THEOREM 7. Theorems 4, 5 and 6 remain true if assumﬁtibh‘(AG) ié re-

pléced Ez

X, Exsx.,,0st=+t

1. 27 1
 ThevprQof of Theorem T is the same as the proof given by

Padmavally in [ll; ﬁp. 547-5497.

IV. MONOTONE SOLUTIONS

The purpose of this section is to generalize Theorems IV

and V'of [11] (compare [2, p. 391 and section 3]) .,

THEOREM 8. Supposc (Al-5) and either (A6) or (A7) hold. If G(x,t)

is nondecreasing in t for each fixed x and u(0) z 0, then the

solution x(t) of (N) is nonnegative and nondecreasing on 0 £ t < =,

If in addition (A6) holds and either

(2) uw(0) >0 and G(x,t) >0 when x <u(t), or

(v) G(x,t) is (strictly) increasing in t,

then x(t) is increasing on O £ t < o,

Proof. It is enough to consider the case where (A6) rather than

(A7) is satisfied, c. f. [11, pp. 547-549]. Fix b >0 and define

9(t) = (6(x(£),£) - G(x(t+h),)}/(x(tn)-x(+))

if x(t+h) £ x(t) and @(t) = O otherwise. ILet z, and 1z, solve

the equations
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h : t .
z () = [ a(t+h-s)6(x(s),s)ds - [ a(t-s)o(s)z,(s)ds,

and

" | - t
z2,(t) = [ a(t-s){G(x(s+h),s+h) - G(x(s+h),s)}ds - [ a(t-s)o(s)z,(s)ds.

Since G is nondecreasing in t, the function wu(t) is nondecreasing.
By Theorem 6 above O S x(t) = u(t) for O £t <w. Thus G(x(t),t) 20
for all t z 0. Lemma 4 implies that zl(t) 20 for all t 2 0.

Since G 1is nondecreasing in t, z2(t) 2 0 by Lemma 3 above, There-

fore
x(t+h) -~ x(t) = zl(t) + z2(t)-z 0

for all t 2 0. Since h >0 is arbitrary the function x is non-
decreasing.

If (a) holds then by Corollary 5 zl(t) >0 for all t >0.
If (b) holds then by Corollary 4 ,Zg(t) >0 for all t >0. In

either case x(t+h) - x(t) >0 for all t+ >0 and all h > O.

. This pioves Theorem 8,

THEOREM 9. Suppose (A1-5) and either (A6) or (A7) are satisfied.

Suppose G(x,t) 'is nondecreasing in t for each fixed x,

u(0) 2 0 and 0 < u(w) < .

| (i) Suppose for each & >0 there exists U >0 and ¢(8) >0
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such that G(x,t) Z2@(8) if £+ 2 U and 0 <x < u(t)-5. If

af Ll(o,m) then the solution x(t) gil(N) tends Eé the limit

u(o) -as" t oo,
(i1)  If  G(x+u(t),t) -0 as (x,t) = (0 ,») and if ae Ll(O,co)

then the solution x(t) of (W) téndsvﬁg‘g limit x(w) < u(w)

cas t oo,

—

Proof. Note that wu(t) is bounded and nondecreasing so that u(w)

exists. Theorem 6 above implies that O £ x(t) £ u(t) £ u(w) for
all t 2 0. Theorem 8 implies that x(t) is nondeéreasing. There~
fore x(wo) exists and 0 £ x(=) £ u(=).

To prove part (i) suppose u(w) - x{w) =6 > 0. Then there
egists a T >0 such that G(x(t),t) =z ¢(8/2) >0 for all t 2 T.
Therefore as t —»

t T t
x(t) = foa(t-s)G(x(s),s)ds 2 foa(t-s)G(x(s),s)ds + fTa(t-s)¢(9/s)ds - o,

This contradicts the boundedness of x(t).
To prove part (ii) suppose x{») = u(x). Given € > 0 there
exist T  and @ >0 such that if t 2T and O < u(t)-x <o
‘then 0 S G(x,t) <€. There exists T 2 T such that 0 < u(t)-x(t) <@
for all .t 2 To Therefore when t 2 T
t T t
x(t) = foa(t-s)G(x(s),s)ds s foa(t-s)GQX(s),s)ds + CfTa(t—s)ds

o

—aefoa(s)ds° (t — ).
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Since € >0 1is arbitrary O = x(w) = u(w) > 0. This contradiction

proves part (ii). This completes the proof of Theorem 9.

V. PERIODIC CASE

Assume that G satisfies (AL) and the following additional
assumptions.:
(A8) G(x,f) ié locally Lipschitze continuous in x with Lipschitze
constants independent of t € [0,w). |
(A9) There is a function u(t) and a constant M >0 such that
G(u(t),t) =0 and |[u(t)] M for all t z 0.
(A10) There exists a measurable function 'Go(x,t) defined for -« < X,

t < » and 2ll-periodic in t such that

lim |G(x,t)-Go(x,t)| =0
t o

uniformly for x on compact subsets of (-w,),

LEMMA 7. If G satisfies (AL) and (A8-10) then

(1) Go(xgt) is nonincreasing in x for each fixed 1,
(i) - G, satisfies (A8)
(iii)  6(x,t) ’#nd “Go(x,t) are bounded on sets of the form
[x| =K, 0 st <o for any fixed K >0, and
(iv) there exists a bounded 2l-periodic function uo(t) such that

Go(uo(t),t) =0 forall t+ 2 O and |uo(t){ = M.




Probf. Only part (iv) needs comment. Fix any t € [0,2N). Since
the sequence {u(2nfl+t); n =1, 2, 3,...} is bounded, there is a

subsequence and a number uo(t) such that
u(2njH+t) - uo(t) - 0. (3 =)
Therefore if m = 0, 1, 2

0 = 1im G(u(2n_ II+t),2n N+t) = G (u (t),2ml+t),
. i j o' o
j o
This defines uo(t) on [0,2II). Now extend uo(t) periodically.
Note that there is no loss of generality in assuming either that 2II
is the least period of Go(x,t) in t or that G is independent
of t. 1In either case uo(t) may be defined so that it has the same

least period. This proves Lemma 7.

THEOREM 10. If (Al-4) and (A8-10) are satisfied, then the solution

x(t) of (N) exists for all t 2 0 and satisfies |x(t)| =M. If in

addition either

(a) vGo(x,t) is (strictly) decreasing in x for each fixed 1, or

(b)  a(t) € 1Y(0,=),

then there exists a 2ll-periodic, continuous function ¢ such that

x(t)-p(t) -0 as t —» . The function ¢ has the same least period

as G ahd is a constant if Go is independent of t.

— [0 - et Pttt
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Proof. Theorem 6 and (A9) imply that x(t) exists and [x(t)] =M

for all t 2 0. Let L be the Lipschitze constant for G when

|x| s 2M+1, 0 St <w. For any N > 1L, x(t) satisfies the equation
‘ t
x(t) = fo[Na(t-s)}{G(x(s),s)/N]ds.
The constant N can be picked so large that
(13) |G, 8/ = 6y, )/ S (1/2)] xey]
when |x|, |y| = 2M+1. Also pick N so large that
(14) |G(x,t)/N] < M. (|x] s 2ms1, t 2 0)
Since the functions Na(t) and G(x,t)/N also satisfy (Al-%) and
(A8-10) it is no loss of generality to assume that (13) and (14) are
true when N = 1.
Define a set of functions

8 = {z; z is continuous, 2l-periodic and [z(t)] = 2M for all tz O}.

(If G_ is independent of +t, replace S by the subset of S con-
fo) J

sisting of constant functions.) For any« z € S define
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t 4
Tz(t) = [ K(t-s){2(s)+C (2(s),5)}as, (-0 < £ < )
where k is the solution of the resolvent equation (R). Clearly T

is a complétely continuous mapping of S into the set of all con-

tinuéuS‘EH-periodic functions with the uniform norm.

In order to show that T: 8 -8 fix z € S and t € [0,20).

If M s z(t) £ 2M; then line (14) implies that 0 é-Go(z(t),t) = M.

A

* Therefore 0 2 z(t) + G (z(t),t) = 2M. Similarly if -2M = z(t) = -M,

then 0 z z(t) «+ Gb(z(t),t) 2 -2M. If |z(t)] =M, then

l2(t) + 6 (2(£),0) s [2(t)] + |G (2(t),t)] = am.
Since t € [0,2I) is arbitrary it follows thatv.
t © .
|T2(t)] s [ k(t-s)amds = {fok(s)ds]EM < 2M.

Since 2z € § is arbitrary, T: S = S.
By the Schauder Fix Point Theorem there exists a function

@ € S such that
(15) - e(t) = [ k(t-s){a(s) + G (0(s),s))ds. (- <t <)

This function ¢@ 1is the unique 2l-periodic continuous solution of

(15). For if 6 is another such solution distinet from @, then
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there exists t_ € [0,20) such that
l¢'tt;,)-e<to>l = sup([o(t)-6(t)[ 5 0 = £ < 2} >o.
Define r(t) = m(t+;o) - 9(t+to) and
g(t) = (G (o(t+t ) b+t ) - Go(¢(t+to),t+to)}/r(t)

when r(t) £0 and g(t) =0 if r(t) = 0. Clearly r(t) is

measurable. By (Al0) and line (13) it follows that 0 s g(t) s 1/2
for all t 2 0. Moreover r(t) satisfies the equation
t
r(t) = [ k(t-s)(1l-g(s)}r(s)ds. - (-0 < t < @)

Suppose condition (a) is satisfied. Then there exists
t; >0 such that k(t), r(t) and g(t) are all strictly positive

on the interval (O,tl). Therefore we obtain the contradiction

«©

Q «© .
| 2(0)] < [ k(-s)|[r(s)]ds s szplr(t)lfok(s)ds = [r(0)| [ k(s)ds = [(0)] .

Suppoée condition (b) is satisfied. Then

A

[ k(-s)r(s)[as = [r(0)] [ k(s)as < [r(0)].

[ r(0)]
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Therefore in either case (a) or (b) the solution ¢ of (15) is. unique.

In order to show that x(t) ~@(t) 20 as t 9> write

x(t) in the form

: t
(16) x(t) = F(t) + [ k(t-s){x(s) + G_(x(s),s)}as,

where

t
F(t) = fok(t—s)(G (x(s),s) -Gq(x(s),s)]ds -0

as t -9 », Define w(t) = x(t) - ¢(t) for all t 2 0. Let
w, = lim sup w(t) and wy = lim inf w(t) as t - =. Without loss

of generality it may be assumed that W 2 [wll "(otherwise replace

X by -x and @ by -9).

Suppose for contradietion that v >0. Pick € >0 and a

positive, increasing sequence [tn] such that w(tn) v and

w(tn) 2 22, Since

. t
x(t) = fok(t-s)(x(s) + G(x(s),s)}ds

is the convolution of a function in Ll(O,w) with a function in
Lm(O,w), x(t) 1is uniformly continuous. Therefore there exists T > 0
such that w(t+t ) 2 € when [t €T and n =1, 2, 3,...

Now apply Theorem 1 of [7] to equation (16). By this result
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v e

[E]

ey

uniformly in t. Therefore X(t) - @(t+1) 2 € if -T

35

there exists a subsequence of tn (which we again index by n), a

number T € [0,2) and a function X(t) such that t =T (mod am),
x(t+tn) - X(t) =0 (n -» o)
uniformly for t on compact subsets of (-wo,®») and
t
X(t) = [ k(t-s){X(s) « GO(X(S),S+T)}ds,. (-0 <t < )

Since @ is 2ll-periodic and t -7 (mod 2I),

P+t ) - o(t+1) (n - =)

WA

t

A

T.
Define W(t) = X(t) - @(1+7). Since W(t) = lim w(t+tn)
as n -, |W(t)] = w, for all t e (~o,»). Moreover W satisfies
the equation
t

w(t) = [wk(£-s){l-go(s)}w(s)ds, (-0 <t < )

where

g (s) = (0 (0(s+7),8+7) - G_(X(s),s+7)}/H(s)
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if W(s) £0 and g(s) =0 if W(s) = 0. Clearly. go(t) is
measurable and 0 = go(s) £ 1 on the interval -» <t < o,
Suppose condition (a) is satisfied. Then go(t) >0 on

the intefval T £t £ T, Therefore we obtain the contradiction

wo'= w(o) = [wk(—s)[l-go(s)]w(s)ds < [ k(-s)[W(s)|as = wof:k(s)ds évwo.

If condition (b) is satisfied, the.contradiction is

[+

vy = W(0) = [ k(-s)|w(s)|as = fok(s)wods <.

Therefore one must have w_ = 0. This shows that x(t) - o(t) -0

as t —» o and completes the proof of Theorem 10.
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